An Effective Method for Processing Queries with Expensive
Predicates

Hanxiong Chen
Institute of Industrial Information,
Tsukuba International University
Manabe 6, Tsuchiura-shi, Ibaraki 300-0051, Japan

1 Introduction

In this paper, we formalize a query processing scheme based on the filtering for the selection operation
involving a computationally expensive predicate. A cost model is provided and an algorithm is given
to determine an optimal query evaluation plan. Experiments on querying GIS illustrate the effect.
Some empirical results are shown.

1.1 Motivation

Recently, there has been increasing interest in geography and geographic information system (GIS).
A geographic database is a combination of spatial and non-spatial data, with complex data structures
and analyses. Due to the special properties of geographical information, query patterns used in GIS
are different from other non-spatial applications. As pointed in [Worb95], traditional DBMS’s are
unsuitable for spatial data management. One of the reasons is the indexes required for spatial data
are not supported by proprietary DBMS straighforward.

Four spatial objects 01, 02, 03, 04 and their Minimum Bounding Rectangle (MBR) are shown in
Figure 1. The query is to find objects which ovelap o;. Instead of execute the overlaping operation
between o2, 03, 04 and o; immediately, filters are applied. For example, MBR is used to exclude
o3, because its MBR does not overlap that of 0y, so it is impossible that o itself overlaps o;. Other
filters can also be used to exclude 0;. Accordingly, we only need to investigate o4.

To jugde the overlaping relationship between two MBR’s, it needs only to compare two pairs of
coordinates, hence the cost is negligible.

Figure 1: example of overlap

Denoting the overlap relationship between two given spatial objects z, y by overlap(x.y), and the
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overlap relationship between the MBRs of z, y by M BRoverlap(z,y), we have

overlap(z,y) & MBRovlap(x,y) A overlap(z,y) (1)

Further more, let the MBR of 0; be a, supposing that there is a rectangle b which crosses over «
as shown in the figure above. If there is any object » which has b as its MBR, Then this object x

must overlaps o;. For such z, there is no need to evaluate overlap(z, o,).

Let the cross relationship between the MBRs of &, y be M BRcross(z,y), then (1) becomes

overlap(z,y) & MBRcross(z,y) V
(MBRovlap(z,y) A overlap(x,y)) (2)

Now it can be seen that using predicates M BRcross(r,y) and M B Rovlap as filters, it is possible to
figure out whether some objects overlap with other objects without evaluating the predicate overlap.
Our purpose is to find the optimal application of such filters.

1.2 Related Works

Query processing of expensive predicates has been discussed in [CYY*92], It comes from earlier
concept of ADT function in the database context [Atk87, Sto88], and the concept of extensible query
processing[Haa89, PHH92).

Query rewriting is known as an efficient method for processing query, and [PHH92, CS93] use
rewrite rule. The disadvantage of these works is that their passively rewrite the order of the given
predicates. In contrast, our approach takes disjunctive queries into consideration, and it actively adds
“cheaper” predicates which do not appear in the query originally.

Orthogonal issues of predicate placement are discussed in [NBZ86, YKY*91, HS93, Hel94, CS96).
Comparing to these works which treat more than one predicate, we focus on filtering for single

predicate. This narrow focus enabled us to clarify the relationship between filters.

Using index structure such as R-tree ([Gutt84]) is another orthogonal issue. A typicall query to
a R-tree index structure is to find all index records in the R-tree whose rectangles overlap a search
rectangle. As shown in the example above, rectangles overlap is nothing more than a filter in our
framework. This is why we say that a method using R-tree is orthogonal. Simillarly, other examples
index which can be used in GIS in [PTSE95] may be available as filters in our framework.

2 Formalization

In this section, we describe the notations which will be used in the following sections. Let R be a set
of objects, and let f; and f be a predicate. We use f to indicate a predicate if its computational cost
is very high. Furthermore, let op be either a logical conjunction operator (A) or a logical disjunction
operator (V).

The main goal of our research is to minimize the total computational cost for evaluating a simple

selection query like ¢ f-R. In order to achieve this, we attempt to use a set of predicates connected
with logical operators as follows:

Tf op f2 op ... op IHR = UIR
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Here, we call (f1 op f2 op ... op fa) an evaluation plan of f in the sense that both queries give the
same results for a given relation R. It is worth noting that each f; above acts as a “filter” to reduce
- “

the number of objects to be evaluated using f . Weuse f;, f;and f; toindicate a predicate f; if it
is a necessary, sufficient, and necessary-sufficient condition of f, respectively.

Example 1 For the ezample given in the previous sectton let 0y be a constant and £ be a tuple

variable. Furthemore, let f(ol,;v) = overlap(oy, 1), f1 (o1,2) = MBRcross(oy,r), f2 (o1,2) =
Lnd

M BRoverlap(oy, ), and f4 (o1,2) = overlap(oy,x). Then (2) can be rewritten as

—

f(o,,z:) =f, (o1, 2)V ?2 (o), 2)A ?3 (01,7)

-
In term of performance, for a given object = € R, it can be a significant saving if either f, is true
—

or f, is false, since we can avoid evaluating f. Some comments can be briefly made in terms of an
evaluation plan of f.

e The evaluation plain will be evaluated from left to right in order.
— «
e We assume that all f; and f; will be evaluated in a polynomial time.

e In any evaluation plan, if there is a predicate f then f = f. There must be at least one of

such f predicates included which will be evaluated last if needed. If there are two f and f
included, then only one of them needs to be evaluated. This guarantees that f will never be

executed twice for an object in the relation R.

Two normal forms are considered: namely the disjunctive normal form and the conjunctive normal

VA ) (3)
i

form.

AV fe,) (4)
iy

where each fy,; indicates the predicate fi to be evaluated as the j-th predicate in the i-th literal.
Since the cost relies on the order of the execution of the evaluation plan, the evaluation order in
either of the two normal forms is as follows: (a) evaluate all the predicates in the first literal, : = 1,
in the order j = 1,2,--+; and (b) repeat it for the next literal. For simplicity, we use the following
notation A\; = (fx, fi.---) to denote the i-th literal in the disjunctive normal form. All (fi, fr, )
are connected using the logical operator A and will be evaluated from left to right. Also, we use the
following notation v; = (fi, f1,---) to denote the i-th literal in the conjunctive normal form. In this

case, all (fi, fi,---) are connected using the logical operator V and will be evaluated from left to right
as well.

Two issues

The evaluation plan can be either of the two normal forms. Here, we are concerned with local

optimization and global optimization for an evaluation plan. By local optimization, we mean two
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assertions. Firstly, we mean a permutation of all predicates in either ); or »;. This permutation
will be optimal in the sense that computational cost of either A; or v; will be minimized when it is
applied to a relation R. Secondly, we mean some predicates in either ); or v; will be pruned. By

global optimization, we mean the order of evaluation of the literals and further pruning if needed.

3 Local Optimization

In this section, we discuss local optimization. In next subsection, we describe briefly our previous work
[CYY*92] for optimizing the literal A\; = (fi, fi,---) in a disjunctive normal form. In the following
section, we will discuss how to optimize the literal v; = {(fr. fi,--+) in a conjunctive normal form. The
two issues mentioned above are taken into consideration: determination of the order of evaluation for
all the predicates and pruning unnecessary predicates in either A; or v;. The parameters used in the
following discussions are given below. Let ¢ and c; are the computational costs for the predicate f
and f;, respectively. Let Iy, be a selectivity for a predicate f; as Iy, = |oy, R|/|R| where |R| denotes
the cardinality of R. In a similar fashion, I; = |o;R|/|R|. Here, we assume that the selectivity of f;
is independent of any others.

3.1 Conjunctive Filtering

The literal A; = (fg, fi,---) in a disjunctive normal form must be one of the following two forms:

>

N
o If there is only one predicate in A;, then A; = (fx) or \; = (fi)-!

o If there are more than one predicate in A;, then

N=(fefi s fons )

First, there is no sufficient condition of f in A; in this case. Second, all the predicates except
for the last to be evaluated are necessary conditions of f.

In addition, given two literal A; and A; for i # j, the two literals must be different in the sense that

they don’t contain the same set of predicates. It is worth noting that o) R = o ;R holds for any

N
literal A; except for the case \; = (fr)- To estimate the cost of \;, a reduction ratio, called “false

N
drop”, is introduced for a necessary predicate fi, denoted by dj.
di = (log R = |o;RI)/(IR] = |o;R|) = (Iy, = I})/(1 - I})

- .

Since fi is a necessary condition of f, then 0 < [/- < Iy < 1. Hence, 0 < d;, < 1. Figure 2
illustrates these relationships, where “fi” is a simplified notation of ¢ 7.(R). Ideally. a smaller false
drop is desirable.

— Lad
Let’s only consider the evaluation of the literal A, = (f, (01,2), f5 (01,2)) in Example 1.2

0oy = U(?;(

o1,z), f 3(0y,2))

- —
Ai = (f&) is only allowed if there is A; for j # 4, in which it contains f.
2In general, the order of evaluation literals will be considered in the global optimization phase.
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Let é, ¢, and c3 be the computational costs for f, f2 and f3, respectively. Here, f3 = fandecs = é.
First, the total computational cost of o ;R is ¢|R|. As shown in Figure 2, the total computational
cost for o » - R is estimated by
(/1(01 vz)vfs(olv:))

(Tj(ca + &)+ (1 = Ij)(c2 + da20))|R|
Therefore, the radio between & R| and the above is

Co Co

If the ratio is less than 1, the optimization is profitable. Since I, < 1 and ¢ > c3, the above is almost
always true.

t L)
R fi false of fi 1 Ti di(1-1)
) ) 4 )

Figure 2: Selectivities and false drops

For simplicity, we use A\; = (f1. fa, -+ fu—1, fn) to indicate a permutation of A; = (f, fi,--+) on
the condition that f, = f . The total computational cost for

a(flAsz"'Afvx—lAfn)R

which is denoted by Cost(A;) or by Cost(f1, f2,- -+, fn—1, fn), is as follows:

Cost(\;) = If-(cl +cot..tcn)+(1— If-)(cl +dycy + didocs + ... + dyda..dy—ycn) (

[$))
-~

In [CYY*+92], a rank pi is given as pi = /(1 — di). Also, a Lemma was given to find a
permutation of (f1, fa, -+, fn—1, fn) for which all of the predicates are sorted in the ascending order

based on their ranks, p; < pa < ps,---. This Lemma proves that the cost of this permutation is
optimal for A;, if all predicates are used.

Lemma 1 Let fi,..., fn and p1, ..., pn be a permutation of \; = (fi. fi.- ) and their ranks. Ifp; < pj,
for any 1 <i < j < n, then Cost(fi,..., fn) is the minimal cost for A,.

However, the above Lemnma doesn't state whether any f; can be further pruned from the permu-
tation, in order to reduce its computational cost.

Lemma 2 Let \; = (f1,--, fn) be @ permutation satisfying Lemma I. Then Cost{A;) <
Cost(\i — {fi}) implies Cost(A; — {f;}) < Cost(A; — {f;} = {fi}), for any j # k.

The Lemma 2 states that if the elimination of fi from A; increases the computational cost,
then elimination of fi from any subsequence of A; will increases the computational cost as well. In
fact, this is used to reduce the search space of the optimization. Based on the two Lemmas, the
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local optimization algorithm can be obtained. The Theorem in [CYY™*92] proves that the algorithm
provides an optimal solution.

Algorithm (Local Optimization). Suppose that the evaluation plan of the i-th literal is \; =

(fx+ f1,-++). Suppose their computational costs and false drops of any predicate in A; are known.
This algorithm will generate a local optimal plan for the literal ;.

—

. Obtain a permutation A; = (f}, ..., f,), that satisfies Lemma 1.

[S]

. Remove all predicates fi in the permutation, if dy = 0 and fi 1s not f.3

3. Let A{ be a subsequence of the permutation in which it only contains frif Cost(A; — {fic}) <
Cost(\;) or fi. is f. Let m be the length of the sequence. Output Search(\:,m)

The procedure Search(A, 1) is defined as follows.
Search(A,1)
if 2 = 0 then return A;
let f; be the i-th predicate in A;
if Cost(A — {f;}) < Cost()) then
return minCost(Search(X — {fi},1 — 1), Search(A,i — 1))
else return Search(\,i — 1);
Here minCost(X}, Ay)="if Cost(A;) < Cost()y) then A, else A,”.

3.2 Disjunctive Filtering

Let vy = (f1,fa,-+) be a literal, f{ V f V---, in a conjunctive normal form. This literal v =
(fi, fa,-++) will be executed in the order as specified. Recall that the literal A= (fi,f2.-+") is to
discard all the objects which do not satisfy any f; in Aj. The literal vy = (fi, f2.---) is to output
all the object which satisfy at least one f; in . Therefore, the same fi predicate will act differently
depending on where it exists.

¥ ¥

£i Ii

y }

R f true drop of fi 1 I di(1-X)
i ¢ i {

] Xi=1-1i
X
i

Figure 3: Selectivities, Excluding Rate and True Drops

For a f; in v, an ezcluding rate, denoted X, = (1—1Iy,), is defined and is illustrated as in F igure
3. If f; is a sufficient condition of f, then Ij > Iy, and therefore Xf < Xy,. In comparison with the
false drop, d;, defined for a predicate f; in a literal A, a true drop of f;, denoted z;, is defined below.

2i = ([R—osR| = |R - 0;R|)/|0;R]) = (X, - X;)/(1- X})

3the false drop for f is zero.
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vi’here Xj and Xy, are the excluding rates of f and f;, respectively. If f; is a sufficient condition of
f, then 0 < X/- < X, < 1. Therefore, 0 < z; < 1.
For simplicity, we use v; = (f1, f2, *+ fu-1, fn) to indicate a permutation of v; = (fi. fi,-- ).
The total computational cost for
TV vV fua v B
which is denoted by Cost(r;) or by Cost(f1, f2,- " fu—1, fn). is as follows:

Cost(v;) = Xf‘(cl +cr+...+en)+(1- Xf-)(cl 4+ 200+ 212203 + oo F T 1T9. 01 Ch) (6)

In a similar fashion to the rank p;, a new rank pi = ¢;/(1 — ;) can be specified. Using pj, the
same Lemmas as given in the previous section can be proved for any literal v. Therefore, a similar

Algorithm can be proved to minimize the computational cost for any v as well.

3.3 Complexity Analysis

Some researchers like those of [HS93, CS96] define the rank by cost_per_tuple/(1-selectivity) or its
inversion. It must be noted that their definition is not apropriate, at least in the case of our discussion,

because such definition ignore the case e.g. a predicate f, is applied to the result of oy, I instead of
to R itself, and so on.

The cost of optimization itself is cheap; ranks of each f; are calculated, which cost O(n). Then,
fi’s are sorted according to the ascending order of their rank p; in complexity O(t * (n/t) log(n/t)),
where t is the number of predicate in a conjunctive or disjunctive pharase. Hence the total cost of
order f; is O(nlog(n/t)). The complexity of the algorithm in either sub-section above is O(T*2*),
where T is the cost to calculate the value of the expression

Cost(AN) =Ix(c1+co+ ... +¢y)
+(1 = I)(cy +dyca +dydzcs + ... + didy...di—1cy).

For the original expensive predicate with a small number of functions in the specification. O(T*2%)
is small. On the other hand, if the expensive predicate has a large number, denoted by n, of filters
in the specification, the naive algorithm to find the optimal subset and order has the complexity
O(2" x n!). The algorithm above reduces the cost from O(T * 2" * n!) to O(T * 2%) for some k < n,
extending the practical applicability of our optimization scheme. Furthermore, since the ranks of
expensive predicates are considered as fairly stable, optimal decomposition for a given expensive
predicate does not change frequently. This means that once the optimal decomposition is derived for
an expensive predicate, the DBMS can cache the optimization result.

4 General Filtering Algorithm

Now we return to the problem of optimizing (3) and (4). Let A; and v; be a result of section 3.1 and
3.2 for Afij and Vf;j, respectively. \; and v; is a local optimal evaluating plan. Then (3) and (4)
is rewritten to V;A; and A;v;. If we can figure out the necessary parameters computational cost and
drop for A; and v;, then we are able to reuse 3.1 and 3.2 to optimize.

As shown in Figure 2, the false drop of ); is the product of that of f;;’s, dx, = H,‘ di;.

Denoting 9= d;; = 1, then similar to (5), the computational cost of of each object. A;. is given by
j=1"1 g

cx, = Ix(ca+cio+..+cip)+(1=I)(ci +dicia +dpdipcis+ ... +dindiz.d; 1 ci,)
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G ; k-1
= I*Zc,-j +(1- I)ZC.’L- Hdij
j=1 k=1 i=1

Therefore, the rank of A; can be calculated by

px =cx/(1—=dy,)

Now we can reuse the conclusion in sectinos 3.1 and give the general filtering algorithm for (3)

Algorithm (General Filtering)

1. Optimize each pharse as in the section 3.1. Let the results be A; for each phares :.
2. Sort A;’s in the ascending order of their ranks p A

3. Using the algorithm in section 3.2 to prune some A;’s.

The optimization of (4) is in the simillar way. Referring to Figure 3 and equation (?7), we have
dy; = I1; dij,

t; t; k-1
Cy, = X % ZC,']'-{- (1 - _Y)ZC.‘I; Hdij
j=1 k=1 j=1
and
pvi =c, [(1—d,,)

Our optimization is excellent in that it is

Concise. The algorithm in section 3.1 is the only one needed to be implemented.

Simple. The only information about fij’s is their cost and selectivity. Other paprameters are simply
derived.

The only semantics of f;; is its dependency ( necessary or sufficient condition) against f. We avoid to
discuss the semantics between f; ;j's because it makes the optimization impossible, though theoretically,
avoiding of semantics sacrifies the optimality. The complexity of the general filtering is twice as that
of the algorithm in local optimizaiton, plus the calculation of ¢x, and c,, for each i. The costs of
calculating dy, d,,, py, and Pv; are negligible.

5 Conclusion

We have proposed and described a new scheme of optimizing queries including expensive predicates,
based on the concept of filtering. Optimization algorithms are proposed to find the optimal plan of
evaluating expensive functions. The analytical study based on the model shows the advantage of our
method. The experimental study for the geographical database shows the feasibility of this method.

New methods and extension of the cost model poses the following open problems; 1) For an actual
user defined data type, the rank of each expensive predicate should varies depending on the sizes the
instances. 2) Since the efficiency of the algorithms depends on the specification of the expensive

predicate, semantic information associated with these predicates is necessary.
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