An Extension of Gordan’s Lemma
for Infinite Systems of Strict Linear Inequalities

Kiyoshi Ikeda

1 Introduction

Let S be an arbitrary subset of IR"*!. The general system of strict linear inequalities that we wish

to consider in this paper has the following form:
ax; +ax,+---+apx, > b forall (a;,a,,...,a,,b) €S. (1

It is well-known that, in case S is a finite set, Gordan’s lemma gives a necessary and sufficient
condition for the existence of solutions to (1) : there exist real-valued solutions x,,x,,...,xn to (1)
if and only if O is not a linear convex combination of SU{(0,...,0,—1)} (where O denotes the
origin of R"*1),

Gordan’s lemma cannot however be directly extended for the infinite case, as shown in the follow-
ing example: 8’ = {(1,1), (1,2), (1,3), ..., (1,k), ... }. One can easily verifies that (0,0) is not a
convex combination of §'U{(0,—1)}, but the corresponding system of strict linear inequalities has

no real-valued solution :
x > k for all positive integer k. )

Let @ be an imaginary solution to (2), which we call an infinitely large number. The aim of this
paper is to show that Gordan’s lemma can be extended for the infinite case if we adopt such an
infinitely large number @ as a solution to the system of strict linear inequalities.

For this purpose we introduce an extended structure of the field of real numbers IR with an infinitely
large number @, showing that this structure coincides with the set of lexicographically ordered vec-
tors.

As Gordan’s lemma is proved by way of the usual separating hyperplane lemma, the main result
of this paper is derived as a consequence of the lexicographical separation theorem of Hausner and
Wendel [6], Klee [8], Martinez-Legaz and Singer [11] that any two disjoint convex sets in IR" can be
separated lexicographically.

In Section 2 we review some basic results on the lexicographic order on IR". Also we introduce
a new concept called “lexicographically ordered polynomials,” showing that the lexicographic order
can be described by the ring of Laurant polynomials whose variable is infinitely large. The concept
of lexicographically ordered polynomials is a slight modification of that proposed by Hammond [4].
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In Section 3 we define some fundamental notions in convexity theory. Then we present the lexico-
graphical separation theorem mentioned above, and modify it in terms of lexicographically ordered
polynomials.

In Section 4 we provide our main results of this paper, where we apply the lexicographical sepa-
ration theorem to strict linear inequality systems. Our goal is prove Theorem 4.2, giving a necessary
and sufficient condition for the existence of solutions to infinite systems of strict linear inequalities.
Here we allow the solutions to be lexicographically ordered polynomials. Several examples of strict
linear inequality systems exhibit that it is not unreasonable to obtain such lexicographically ordered
polynomials in our solutions.

In Section 5 we give concluding remarks.

2 Lexicographic Orders

In this paper, the elements of IR" will be considered as column vectors, and the superscript 7 will

mean transpose. First, we introduce the lexicographic order on IR".
Definition 2.1 Let = = (x,...,x.)7 , y = (y,,...,¥:)7 € R". We define
z<,y iff xz#y and x <y for k=min{i|x, #y}, 3)

where <, denotes “lexicographically less than.” We also write = <, y to mean x <, yorr=y.

a
The next proposition is easy to check, so we omit its proof.
Proposition 2.1 Let a,b,c,d € IR",and A € R.
(@ a<, b and c<, d imply a+c<, b+d,
(b) a<, b and A >0 imply Aa <, A b. 0

We say that a matrix M is lower triangular if all entries above the main diagonal are zero ; and
unitary if all the diagonal elements are equal to one. The next proposition states that the lexicographic

order is preserved under a unitary lower triangular transformation :

Proposition 2.2 Let a = (a,,...,a,)", 0=(0,...,0)7 € R". For all n x n unitary lower triangular
matrices M, a >, 0 implies Ma >, 0.

Proof. This is proved by induction on n. For n =1 the statement is obvious. For n > 2, we assume

thatit is true for n—1. Let a = (a,,a,,...,a,)T >, 0, and let M be an n x n unitary lower triangular

matrix. Let @ = (a,,...,a,) . Since M can be written as (
*

0

. | forsome (n—1)x (n—1
s ) (n=1)x (n=1)
unitary lower triangular matrix M , we have

a> 0
< a >0or “g,=0and a> 0"
== a, >0 or “a, =0 and Ma >, 0" (by the induction hypothesis)
<= Ma >, 0.
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Thus we get the conclusion. O

Corollary 2.1 Let a = (a,,...,a,)T ,b=(b,,...,b,)T € R". For all unitary lower triangular ma-
trices M, a >, b implies Ma >, Mb.

Proof. Suppose a >, b. Then we have a — b >, 0 by Proposition 2.1. Hence Ma —Mb >, 0 by
Proposition 2.2, and therefore Ma >, Mb by Proposition 2.1. O

Proposition 2.2 can also be derived directly from the statement below Theorem 3.6 of Martinez-
Legaz [10], which shows that Az >, 0 for every = >, 0 if and only if A is lower triangular and all of
its diagonal entries are strictly positive. See also Martinez-Legaz [9] and Martinez-Legaz and Singer
[12] for some related topics on the lexicographic order in terms of linear operators on IR".

A Laurant polynomial is a polynomial in ¢ and ¢t~ of the form

n

Zait’ = apt"+---Fayt +czo+5171t7l +-4a_ gt )

—m
More precisely, the ring R[t,t='] of Laurant polynomials in t over R is constructed as the quotient
ring IR[t,x]/(xt — 1) identifying x with t !, where IR[¢,x] is the polynomial ring in two variables ¢
and x over IR, and (xz — 1) denotes the principal ideal generated by xt — 1. (See e.g. Artin [1] for
more details.) It is not difficult to verify that #-¢~' = 1 and that all the laws for rings are satisfied.

Let us suppose that there is an order < on IR[t,t~!]. Consider the following conditions :

Al < isatotal order on R[z,r'].
A2 forall x,y,x',y,z € R[t,t7'],
(@ x<yand X <y imply x+¥ < y+Yy,
(b) x<y and z>0 imply x-z2<y-2,
A3 the restriction of < to the subring IR is the usual strict order on the real numbers,
A4 t > k for all positive integer k.

Note that A1 and A2 are the standard conditions of ordered rings, and A3 means that the order <
is compatible with the ordering of IR. A4 is the statement that the monomial ¢ is infinitely large
in comparison with IR. As we shall see in the following lemmas, these conditions A1-A4 give a
characterization of the lexicographic order ; we shall show that, if ¢ is infinitely large, the order < on
IR[¢,t7!] is uniquely determined as the lexicographic order (Lemma 2.3).

In the following we write x <y tomean x <y or x=y.

Lemma 2.1 Let < be arelation on IR[¢,#~!] satisfying A1-Ad4. Then, for all positive integer m,

(a) ™ > k for all positive integer k .
(b) 0 <t™™ and t~™ < 1/k for all positive integer k .

Proof.  (a) This is proved by induction on m. For m = 1 the statement is trivial. For m > 1, we
assume that ™! > k for all positive integer k. By multiplying ¢ (> 0), we have t™ ="~ .t > kt
by A2. Since ¢t > 1 by A4, we also have kr > k. Therefore t™ >kt > k.
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(b) Suppose ™ < 0. Since t™ > 0 by (a), wehave 1 ="t~ <0 by A2, a contradiction. Thus
t~™> 0. Next we show that + =™ < 1/k for all positive integer k . Suppose othewise: ¢t =™ > 1/k for
some k. Then, multiplying k™ (> 0) to both sides, we have k= kt™-t=™ > ™ by A2, contradicting
(a). O
According to Lemma 2.1, we shall say that 1™ is infinitely large, and t ™™ is infinitely small in com-
parison with IR.

Now, let IR[¢~!] be the ring of polynomials in !, i.e.

R[] = {a0+a1t“1 +-tat " | neN,*! ay,a,,...,a, € R}, (5)
Note that IR[¢#7!] is a subring of IR[¢,r~!].

Lemma 2.2 Let < be a relation on IR[t,#7!] satisfying A1-A4. Then, for all n € N and all
ay,a,,...,an €R,

a0+a1t71 +otat™" >0 iff (aO,al,...,a,,)T >, 0. 6)
Proof. Itis easy to check that (6) is equivalent to the following two conditions :

if a; >0 for k=min{i|a;#0}, then a0+alt‘1+---+a,,t_" >0, @)
if a, <0 for k=min{i|a;#0}, then ay+a;t™'+- +a,t ™ < 0. (8)

Hence, it is enough to show (7) ; one can easily derive (8) in a parallel way with (7).

Suppose p(t) =a,+a;t~ !+ -+a,t™" is a nonzero polynomial with a, >0 for k=min{i|a;#
0} . We shall show p(t) > 0.

First we consider the case k=0, i.e. a;>0.Ifalso a, >0 forall i >0, then p(¢) >0 is an imme-
diate consequence of Lemma 2.1 (b). Suppose a; <0 for some i >0, and let a = max{|q;||a; <0}.
Then, there is a sufficiently large integer M such that 0 < 1/M < a, /na. Thus, by Lemma 2.1 (b),

we get
pt) =ag+ajt +-Fan™ > ayg—a(t™ +- +17") > ay—na/M > 0.

For the case k > 0, let ¢(t) be the polynomial ¢(r) = a, +ak+]f1 4 +aut~ "% such that
p(t) =q(r)-t7*. Then a, > 0 and hence, applying the above argument to g(r) , we have g(t) > 0.
Therefore, with t=% > 0, we obtain p(r) = q(r) -+ * > 0. ]

Lemma 2.3 Let < be a relation on IR[t,r~!]. Suppose < satisfies A1-A4. Then, for all n,m € N
and all ap,...,ay,ay,a_,...,a_y,bp,...,by,by,b_,....b_, €R,

T T .
(an,...,a;,aq,a_y,...,a_,)" <, (bny...,b;,by,b_y,...,b_,) iff

ant"+- - tapt+agta 7 o fa_ " 9)
< bpt" 4 byt +by+ byt b

*1 N denotes the set of natural numbers including zero.
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Proof. The following holds for all a,,a,_,...,a_,, bs,b,_,....,b_, €R:
(a,,,anfl,...,a_m)r <, (b,,,bnfl,...,b,m)r
< (bp—an,b,_,—a, |,...,b_, —a_m)T >, 0 (by Proposition 2.1)
= (bp—an)+ b, ;—a, )t '+ .+ (b_p—a_,)t "™ >0 (byLemma2.2)
= [(bn—an)+ (b, —a, )t +..c+(b_py—a_ )t "] >0

= (bp—a)"+ (b, ,—a, N '+ b p—a_ )" >0
= ant"a, " a_ T < bt b, " bt

a

By Lemma 2.3, a relation on IR[f,r~!] satisfying A1-A4 is determined uniquely as the lexico-
graphic order. Such polynomials in IR[z,+™!] are called lexicographically ordered polynomials.

In this paper, we use the expression  instead of ¢ for an infinitely large number, and also € instead
of t~! for an infinitely small number, so that

(i) w-e =1 and (i1) @ > k for all positive integer k. (10)
The ring of lexicographically ordered polynomials is, therefore, denoted by
R(w,e] ={a,0"+ - +a0+ay+a_je+---+a_,e" |[n,meN, ay,...,a_, € R}, (11)

where we tacitly assume that there is a relation < on IR[w, €] satisfying A1-A4, identifying ® and
€ with r and t !, respectively.

Also, in this paper, we use the following notations :

Rle|,={ay+a,e+--+an" | ay,a,...,an € R}, (12)
R{w,el,={a,0"+ - +a0+ay+a_e+ - +a_,£" | ana,_,,...,a_, ER}.

In other words, R[ @, €], is the set of lexicographically ordered polynomials whose degrees are not
more than n and not less than —n.

Our notation a,@" +---+a,w+a,+a_€+-- +a_,e" canbe understood in a parallel way
with the decimal number system. The decimal number system is indeed the lexicographical order.
For example, in the decimal number system, the expression 24.13 is identified with the real number
2x 10+4+1x &5 +3x (55)%, and so on.

Remark 2.1 The readers who are familiar with “ nonstandard analysis ” will easily see that the above
defined IR[®, €] can be identified with a proper subring of the hyperreal numbers. This is the reason
why we use the symbols “ @ ” and “ € ” for an infinitely large number and an infinitely small number,
respectively, in our notation a,®" +---+a,0+ay+a_j€+---+a_,€e".

Formally, the ordered field of hyperreal numbers is constructed as an ultrapower of the real num-
bers, and hence it has such properties as (1) including IR as a subfield, (2) containing an infinitely
large number @, (3) satisfying the transfer principle, i.e. satisfying the same first-order sentences
as IR . For more details, see e.g. Goldblatt [3]. It is easy to verify that the lexicographically ordered
polynomial ring IR[®, €] can be embedded into the ordered field of hyperreal numbers, identifying

the variables @ and € with an infinitely large number and its multiplicative inverse, respectively.
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Hammond [4] introduced the smallest subfield containing both the real numbers IR and an infinitely
small number &, showing that this subfield is ordered lexicographically. Also Hammond [5] gave a

suitable metric on this subfield so that it is extended to a complete metric space. O

3 Lexicographical Separation of Two Convex Cones

Let us recall that a subset C of IR is convex if Ax+ (1 —A)y € C whenever z,y €C and 4 € R
with 0 <A < 1. Let S be an arbitrary subset of IR” and let ¢ € IR" . We say that ¢ is a linear convex
combination of § if, for some k, there are A, >0 and s, € S for i =1,... k with Zf?: 1A; =1 such
that ¢ =3% | As;.

Let P be a subset of IR”. We say that P is a convex cone if for all ,y € IR” and all A € IR, (i)
x,y € P implies £+y € P,and (ii) x € P and A >0 imply Az € P. (It is easy to check that
a convex cone P is a convex set.) A positive cone P is a convex cone in which 0 is not contained,
i.e. (iii) 0 ¢ P (where O denotes the origin of IR”). We denote by P the complement of P, that is,
P=R"\P.

Ikeda [7] proved a lexicographical separation theorem that any two disjoint convex cones can be

separated by linear functions and the lexicographic order. Below we present it without a proof.

Proposition 3.1 (Lexicographical Separation Theorem) Let P be a nonempty subset of IR”. Sup-
pose P is a positive cone and P is a convex cone. Then, there exist real-valued linear functions
gys---,8n onIR" such that for all x € R",

zeP iff (g(x),....g(x))" >, (0,...,0)7. (13)
O

Equivalent versions of this proposition were also proved by Hausner and Wendel [6], Klee [8], and
Martinez-Legaz and Singer [11]; but the proofs were given by different methods. Proposition 3.1
will play a key role in establishing our main results in the next section.

Here we modify the statement of Proposition 3.1 for our later convenience :

Proposition 3.2 Let P be a nonempty subset of IR". Suppose P is a positive cone and P is a convex

cone. Then there are lexicographically ordered polynomials gq,,...,q, € IR[€], , such that for all
Ay A ER,

Ay A)T € P iff Aig 4+ Angn > 0. (14)

a

Let us briefly check the equivalence of Proposition 3.1 and Proposition 3.2 :

(Proposition 3.1 = Proposition 3.2) Suppose there exist real-valued linear functions g,,...,g, on
IR" such that (13) holds for all x € R". Let (r;;),; ;<, be an n x n real matrix such that ri; = 8i(e;)
forall i,j, where e ; denotes the unit vector of IR"” whose jth component is 1 while the others are 0.
Let q,,...,gn € R[€], , be defined by

(9192 ---92) = (1 e...e"") : (15)
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Then one can easily verifies that for all 4,,...,4, € R,

Ay A)T € P
T = g Ay 0
= Lot : >, : (by (13))
Tyi 0 Tam An 0
™ Tin Ay
= (le...e"h Do : > 0 (by Lemma 2.2)
ryo Tm A
= Ag+--+Agn > 0. (by (15))
(Proposition 3.2 = Proposition 3.1) Conversely, suppose there exist g,,...,q, € IR[€],_, such
that (14) holds for all A4,,...,A4, € R, where q,,...,qn are represented by an n x n real matrix
(r; j)l <ij<n of the form (15). Let the corresponding linear functions g,,...,g, on IR" be defined as
g(x) = llrj1+-~+),,,rjn forallzz(ll,...,ln)TEIR". (16)
Then, by a similar argument to the above, (13) holds forall z € IR. 0O

4 Strict Linear Inequality Systems

In this section we apply the lexicographical separation theorem (Proposition 3.2) to strict linear
inequality systems. First, we provide an extension of Gordan’s lemma for a specific form of strict

linear inequality systems, allowing an infinitely small number € as a solution :

Theorem 4.1 Let S be an arbitrary subset of IR". Then 0 is not a linear convex combination of § if

and only if the system

a,\x; +ayx,+---+apx, > 0 forall (al,az,...,a,,)T €S 17N
has solutions x,,x,,---,X, in IR[g],_, .

Proof.  (the “if” part) Suppose the system (17) has solutions x;,X,,...,X, In IR[E]nvl . Let

x=(x;,%),... ,X») . Suppose also 0 is a convex combination of S, i.e. there exist s,,...,8, € S and
Ags-oos A € R with ;>0 for i=1,...,k such that 0=A4,8 +---+A8;. Then
k k

a contradiction.

(the “only if” part) Let S be a subset of IR”, and suppose 0 is not a convex combination of S.
We shall construct a subset P of IR” in such a way that P O S, P is a positive cone, and Pis
a convex cone in IR”. Once the existence of such P is confirmed, by Proposition 3.2 there ex-
ist polynomials ¢,,...,¢» € IR[€],_; such that (14) holds for all (A--,An)T € IR, and hence
(x),--sXn) = (qy,---,4n) is adesired solution to (17).

By Zorn’s lemma, there exists a maximal subset P of IR” (with respect to inclusion) such that

i PDOS, (i1) 0 is not a convex combination of P. (18)

Then, the following conditions hold for P:
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(1) o¢r,

(2) forallxeR”, xTcPorxz=0or —x€cP,

(3) foralx€R”, &P and A >0 imply Az €P,

4) forall z,yc€R", x€P and yeP imply c+yecP.

(1) is trivial. We shall verify (2), (3), and (4) as follows.

(2): Let = be a nonzero vector in IR". We shall show that either & or —z is in P. Suppose oth-
erwise: « ¢ P and —x ¢ P. Then, by the maximality of P with respect to (18), 0 is a convex
combination of P U {x}, and also O is a convex combination of P U {—x}. Hence, there exist
Pry--sP; 45 Gm € P and Ag,... A, ly, ..., m € IR such that

! l
hx+ Y Ap, =04 >0 fori=0,..../, and Y A =1,
k=1 i=0

m m
Ho(—%) + X 1q = 0,u; >0 for j=0,....,m, and Y p = 1.
k=1 i=0
Therefore (i, o)+ A (Shey meq) = 0. Let & =po (Xh; A)+ 24, (T, 1) - Then

l m
%uo(z Ap,) + %%(Zuqu) — o,
k=1 k=1

which means that O is a convex combination of P, a contradiction.

(3): Suppose x € P, A >0,and Ax ¢ P. Then, by the maximality of P with respect to (18), 0 is a
convex combination of P U {Az }. Hence, there exist p,,...,p, € P and [, ... ;i; € R such that

] )
Ho(Ax)+ Y yp, =0, ;>0 fori=0,..,0, and Y =1.
k=1 i=0

1 I
(MpA = + 2 M, p,) = 0. This means that 0 is a convex combi-

Let & =pyA +34_, 1, - Then E
k=1

nation of P, a contradiction.

(4): Suppose there exist x, y such that x € P, y € P, and ¢ +y ¢ P. By (2), we have either
x+y =0 or —x—y € P; both cases contradict the hypothesis that O is not a convex combination
of P.

Thus, by (1), (3), and (4), P is a positive cone in IR". Now, by (1) and (2), we have exactly one of
z€P,z=0,and x € —P forall z € R". Hence P=—P U {0} . Therefore P is a convex cone
in IR". O

Example 4.1 Let S, (C IR?) be

§,=1{(1,0,0)7,(0,1,0)7,(0,0,1)T } U {(1,-1,0)7,(1,-2,0)7,...,(1,—k,0)T,...}

U {(0,1,-1)7,(0,1,-2)7,...,(0,1,—&),...}. 9

It is easy to verify that (0,0,0)7 is not a linear convex combination of S, . By Theorem 4.1, the
corresponding system

x>0,y>0,z>0, x—y>0,x-2y>0, ..., x—ky>0, ...,

V—2>0,y-250, ..., y—kz>0, ... (20)

has solutions x,y,z in IR[€], : for example, (x,y,z) = (1,¢,€?). O
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Next we deal with the general form of strict linear inequality systems :

Theorem 4.2 (Main Theorem) Let S be an arbitrary subset of R"*!. Then 0 is not a linear convex
combination of S U {(0,...,0,—1)T } if and only if the system

ax, +a,+ - +ax, > b forall (aj,a,,....an,b)T €8 @1
has solutions x,,x,,--- ,xp in R[®,€],.

The proof of Theorem 4.2 will be given by a series of lemmas. Let us denote by S the subset of
IR"*! whose elements are obtained from S by changing the signs of the last components, i.e.

§ = {(a},...,an, =b)T €eR" | (a,,...,an,b)" €S}. (22)

Similarly, for @ = (a,,...,an, b)T we use the notation & = (a,,...,a,, —b)

Lemma 4.1 Let S be a subset of IR"*!. Then 0 is a linear convex combination of S if and only if 0

is a linear convex combination of §.

Proof.  Suppose 0 is a linear convex combination of S. That is, for some k, there are A; >0 and
s, €S for i=1,...,k with Y% /A =1 suchthat 0= ¥X | A;s;. Then, one can easily verifies that
0 = Y%, A,3,, which means that 0 is a linear convex combination of S. The converse can also be

shown in a similar way. O
Lemma 4.2 Let S be a subset of IR”"'. Suppose 0 is not a linear convex combination of S U
{(0,...,0,1)T } . Then, the system

a;x; +a,x, +---+ayx,+by > 0 forall (al,az,...,a,,,b)r €S (23)

has solutions x,,X,,---,Xp,y in R[g], such that y = cek for some real number ¢ > 0 and some
ke N with k<n.

Proof. Let S be a subset of IR"*!. Suppose O is not a linear convex combination of
SU{(0,...,0,1)T }. Then, by Theorem 4.1, the system

y>0 and (24)
a,x; +a,x, +---+ax, +by>0 forall (al,a2,‘..,an,b)T €S 25)

has solutions x,,x5,...,%,,y in IR[&],. Note that x|,x},...,x,,)" canbe expressed as

IRad7R}

TR PR
(X xy .o xy)=(eg.. € (26)
x’(n—H)l )a(n+1)n Yol
for some real numbers x;; and y;. Let z) = (x’lj,...,x’(nﬂ)j)r for j=1,...,n and y' =
(Vys+--+Yos1)T . Then, the system (25) can be rewritten as

@ Y )@y, an b)) = (e ... e")(z) ... @, y')(a,,...,an,b)T > 0
for all (al,...,a,,,b)T € §. By Lemma 2.2, this means that

/

() ...z, y')(ay,...,an,b)T >, 0 forall (a,...,a.,b)" €5. 27
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Also, by (24), we have y' = (y’| yer ,yllH )T >, 0. Hence there is a positive integer d with d <n+ 1
such that
yi=-=%_,=0 and y, > 0. (28)

Let us define an (n+ 1) x (n+ 1) real matrix C = (ci;) by

1 if i=j,
cij = —yi/yy, if j=dandi>j, (29)
| 0 otherwise.
It is easy to check that C is a unitary lower triangular matrix. Hence, by Proposition 2.2, the system

(27) implies that
C(z) ...z, y')(ay,--,an, )T >, 0 forall (ay,...,an, b)) € S. 30)
Let :cj:C:c9 for j=1,...,n,and y = Cy’. Define x,,...,x,,y € R[€], by

— n .
x;=(le.. Jz; for j=1,...n,

. €
y=(01¢€...e"y. @3n

One can easily verifies that, by (30) and by Lemma 2.2, these X|,.-.,Xn, y give solutions to (23). It
remains to show that y = c&* for some ¢ >0 and some k< n.

Let y = (yl,...,yn+|)T. We shall show that y, =y, (>0) and y;, =0 for all i # d . This means
y=y,e4"" by 31).

By (29) we obtain y, = Z;’;‘ C4;¥; = Cqa¥y =Yy Also, forall i >d,

n+1 /
y.
5= ew) = i+ T = iteny = o (<2 )y =0
=1 j<i Yd
Forall i<d,
n+1

Vi = Xy = it ey =i
Jj=1 Jj<i

0 (by (28)).

Thus we get the conclusion. O

Proof of Theorem 4.2.  Letd, ., = (0,...,0,1)T € IR"*!, It is enough to show, by Lemma 4.1, that

0 is not a linear convex combination of SU {4, ,} if and only if the system
ax;+ax,+---+apxn+b > 0 forall (a;,a,,...,an, b)T es (32)

has solutions x,,x,,---,x, in R[®,€],.

For the “if ” part, suppose the system (32) has solutions X|,Xy, -+, %, in R[w, €], . Suppose also

0 is a linear convex combination of § U {6,,,}.ie thereexist s,,...,s, € S and AgsAp,- A €R
with 4, >0 for i=0,1,... ,k and Zf‘:oli =1 suchthat 0=4yd,,, + 4,8, +---+A4,s, . Note that
at least one of Ay,4,,..., A, is strictly positive. Let & = (x,,...,X,,1). Then,

k k
0==x-0=x(Ad,, +2As) =+ A@s) >0,
i=1 i=1
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a contradiction.
For the “only if " part, suppose O is not a linear convex combination of § U {d,,,}. By Lemma

4.2, the system
a;x, +ayx, +---+apx,+by > 0 forall (al,aQ,...,a,,,b)T e§ (33)

has solutions x,,x,,--,X,,y in IR[€], such that y = ce* for some real number ¢ > 0 and some
k € N with k < n. Hence, by multiplying @*/c (> 0) to the inequality of (33), we obtain

ok k .
a, <X‘T)+---+an (x,,:) >+b > 0 forall (al,...,a,,,b)T €S. (34)

Since x,,x,,---,x, € R[€], we have x,@*/c,...,x,0"/c € R[®,€],. This means that the system
(32) gets required solutions. 0

Exampled.2 Let S, (C R*) be
1
S, = {(0,1,Ll)" |[ke N} U {(1,-1,007} U {(_1’1’_Z)T lkeN,}. (35)
The corresponding system of strict linear inequalities can be expressed as
1
y>k foral ke N, x—y>0, and x—y< % for all positive integer k. (36)

It is not difficult to verify that (0,0,0)7 is not a linear convex combination of S, U {(0,0,—1)"}.
Hence, by Theorem 4.2, the above system (36) has solutions x,y in IR[w, €], . For example, (x,y) =
(w+¢e,0). O

5 Concluding Remarks

The main result of this paper is Theorem 4.2, giving a necessary and sufficient condition for the
existence of solutions to infinite systems of strict linear inequalities.

Here we adopt IR[w, €], as the domain of solutions. But, as one can easily notice through the
careful reading of the proof of Theorem 4.2, the domain of solutions can be restricted to {akwk +
+aw+ayt+a_€+--+a_,e" | a,...,a_, € R} for some k,m € N with k,m <n and
k+m < n. Itis also easy to check that Theorem 4.2 remains valid whenever the domain of solutions
is an ordered vector space over IR containing IR[ @, €], as a subspace.

Theorem 4.2 is considered as an extension of Gordan’s lemma, and is proved by way of the lexi-
cographical separation theorem (Proposition 3.1). It will be interesting to deduce also a Farkas type
theorem from the lexicographical separation theorem, and to apply it to non-linear programming

theory.
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An Extension of Gordan’s Lemma

for Infinite Systems of Strict Linear Inequalities

Kiyoshi Ikeda

It is well-known that Gordan’s lemma, one of the theorems of the alternatives, gives a nec-
essary and sufficient condition for the existence of solutions to finite systems of strict linear
inequalities. The aim of this paper is to show that Gordan’s lemma can be extended for the
infinite case if we adopt a suitable non-Archimedean structure as the domain of solutions to
infinite systems of strict linear inequalities. For this purpose we introduce an extended struc-
ture of the field of real numbers IR with both an infinitely large number @ and an infinitely
small number €, showing that this structure coincides with the set of lexicographically or-
dered vectors. The main result is derived as a consequence of the lexicographical separation
theorem of Hausner and Wendel, Klee, Martinez-Legaz and Singer that any two disjoint con-

vex sets in IR” can be separated lexicographically.

Key Words : linear inequalty systems, lexicographic orders, non-Archimedean structures
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