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1 Introduction

Several authors including Kaneko [2], Kaneko and Yamamoto [3] investigated mathematical mod-
els of rental housing markets as applications of the assignment game developed by Shapley and Shu-
bik [4]. In their models, housing markets are formulated as exchange economies in which households
and landlords trade an apartment as an indivisible commodity for a perfectly divisible commodity
called money. Kaneko [2] gave a recursive equation that determines a competitive equilibrium in a
housing market model ; Kaneko and Yamamoto [3] proved the existence of competitive equilibrium
in a more generalized model of an assignment market. These models, however, are not enough to
capture direct interactions among households, which should be treated in the form of externalities.

On this account, Kaneko remarked that a competitive equilibrium exists even when a special type
of externalities is introduced into the housing market model (Section 5 in [2]). In his formulation, the
externalities among households are considered in such a way that the average income of households

-has an effect on a household’s consumption behavior. He formulated such a model of the housing
market with externalities as a straightforward extension of that without cxtemalities.-Nevertheless; his
assumpﬁons includes a rather technical condition (Assumption F’ in [2]) saying that the apartments
are graded according to the qualities under a special allocation of households.

In this paper, we propose a model of rental housing markets with externalities as a modification
of that of Kaneko [2]. We modify the assumptions of Kaneko by discarding the above condition
(Assumption F’ in [2]) and introducing much simpler conditions, namely, (i) a high average income
is preferred to a low one, and (ii) there are two housing areas in the market. Under our modified
assumptions we give a recursive equation that determines a competitive equilibrium in the housing
market with externalities. We also show that in our model the derivation of the recursive equation
can be achieved by the use of Tarski’s fixed-point theorem.

This paper is organized as follows. In Section 2 we give a model of a rental housing market with
externalities, assuming that there are only two housing areas. Also we give a recursive equation that
determines a competitive equilibrium. Our derivation of the recursive equation depends on a lemma
saying that there exists an allocation of households under which the apartments are graded according
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to the qualities. The proof of this existence lemma is postponed until the next section. In Section 3
we review Tarski’s fixed-point theorem, and provide the proof of the existence lemma in Section 2.

2 A Rental Housing Market on Two Areas

Let us consider a rental housing market model as an exchange economy (M,N), where M =
{1,2,...,m} is the set of all landlords and N = {1',2/,...,n’} is the set of all households. In this
economy each landlord supply some units of apartments on the market, while each household looks
for one unit of apartment. The apartments are classified into s types, 1,...,s. Foreach h=1,...,s,
the apartment of type 4 is represented by the s-dimensional unit vector e’ with e’} =11if j=h and
e =0 if j#h. Every landlord i € M is endowed with w' = (w},...,w}) units of apartments that
he can lease to households, where w' is a nonnegative integer for all i € M. We assume

s
(A) Y wip >0 forallk=1,...,s and Y Y wi > n.
ieM , k=1 ieM
Every household j € N is endowed with I/ (> 0) amount of money but with no unit of apartment.
We order the households as
L >26L 2 - =21 (N

A simple utility function is assumed for landlords. Each landlord i € M has the evaluation function
u'(x) on the set X' = {x = (x;,...,x;) € N | 0<x < w;'( forall k =1,...,s} such that for all
x€Xi,

(B) W(x) = Y w(xe) and ui(xkek) =aux, forallk=1,...,s,
k=1

where a, is a positive number. We assume that a, is independent of landlords.
Hence, if landlord i leases w' —x units of épartments atrents ry,r,,...,rs, his utility (profit) is

s s k)
u'(x) + 2 r(wi—x,) = 2 ax, + 2 r(wi—x,). 2)
k=1 k=1 k=1

We call a, the evaluation value of the kth apartment.

Let 7 be a partition of {e',e?,...,¢°}. Each S € T means a housing area in which apartments
in S are located. For each type of apartments h = 1,...,s, we denote by S(h) the area S € T such
that " € §. We assume that every household’s preference depends on his apartment, consumption,
and the environment of S € T in which his apartment is located. The environment of S can be
represented by the average income of the households who rent apartments in S. More precisely, let
x=(x",...,x") € {0,e!,€?,...,e°}" be an allocation of households satisfying T jen xi < YiemWe
forall k=1,...,s. For each type of apartments 2 =1,...,s, we define the average income Y, (x) in
the area S(h) under the allocation x by

)Y JeS(h) Ij i
x r if Yoy X w, #0
’yh(x) = ZieM zekES(h) Wi € ees(h) (3)

0 otherwise.
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We assume that, for each type of apartments A= 1,...,s, the environment of S(k) is represented by
the average income 7, (x) .

Each household j € N has the same preference relation > on Y = {O,el e,...,e} x R, xR, ,.
where R + is the set of nonnegative real numbers. For convenience, we may use ¢+ =0, a,,, =0,
and 7,,,(x) =0 for any x. The expression (e”,m,n) €Y means that the household j rents one unit
of the apartment of type 4 and enjoys the consumption m of money in his environment 7] . We assume
that '

(C) > is acomplete preorderonY .

The strict preference > and the indifference relation ~ are defined in the usual ways, i.e. a > b iff
not(b>a); a~b iff a> b and b > a. We make the following assumptions on the households’
preference relation > : '

(D) Forall (x,m,n)€Y,if >0 then V(x,m+5,n) - (x,m,n).

(E) Forall (x,m,n)€Y,if 6§ >0 then (x,m,n+6) > (x,m,n). ‘

(F) If (x,m;,n,) > (y,m,,n,), then there is an m; >0 such that (x,m,,n,) ~ (y,m;3,n,).
(G) If (x,m;,n;) ~ (y,my,M,), my <m, and 8 >0, then (x,m, +6,n,) - (y,m2+5;n2)..

The assumptions (D) and (F) need no explanation. The assumption (E) means that a high average

- income is preferred to a low one. The assumption (G) means-that the marginal utility of money is

diminishing. '

Lemma 2.1 @) If (x,m,n;) ~ (y,m,,n,) and 0 < 8 <m, <my, then (x,m; —6,n,) = (y,m, — |
8,m,). (i) If (x;my,my) = (yymy,n,) and (x,my,ny) ~ (y,my,M,), then ' my < m,. (i) If
(x,m;,m,) > (y,m;,n,), then (x,mz,'n!) > (y,my,m,) forall m,>m,. ‘

Proof. See Appendix. : ' A , | O

Let 7 be a permutation on {1,2,...,s}. We define a function G, (k) (k=1,...,s) by

k v
Gr(k) = X, X Way- e))
e _ .

For convenience, we put G(0) =0.Let v=(v",... v?) € {0,¢',e?,...,e}" be defined by
Vo= W if Gak—1) < j < Gg(k). ' )

Note that, by the assumption (A), for each j=1,...,n thereisaksuchthat G,(k—1) < j < G (k).
" The following lemma states that, if there are only two housing areas in the market, then there exists
an allocation of households under which the apartments are graded according to the qualities. _This'

lemma plays a crucial role in the following argument.

Lemma 2.2 (Main Lemma) Suppose there are two housing areas in the market. Then, there exists
a permutation t on {1,2,...,s} such that ' ‘

(0, 1)) = (m, 1y 0)) = 2 (T m g, () forallm20, (©)

where v is the allocation of households defined by (5). ‘ A ]
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We will give a proof of this lemma using Tarski’s fixed-point theorem in Section 3.

In the following, we assume that

(H) there are two housing areas in the market, i.e. 7 is a separation (S,,S;;) of {e',e?,...,e°} such
that S,,S,; C {e',e?,...,e}, §;NS,; =0, and S,US; = {el,e,...,e}.

By renaming types of apartments suitably, we shall assume without loss of generality that the
identity permutation r,, satisfies (6) of Lemma 2.2. Thus

(e'ym, 1, (v) = (,m,1,(v)) = -+ = (e, m,%(v)) forallm>0, @)
where v=(v,...,»") is the allocation of households defined by
v = if G (k—1) < j < Gg(k). (8)
We shall denote the function G (k) by G(k). From the assumption (A) we have
G(f—1) <n<G(f) forsome f<s. 9)
Now we define a rent vector (p,,...,p f—l) backward recursively by

(ef’IG(f_l)—afayf(v)) ~ (ef_l’lc(f_l)_pf~177f~l(v))
(ef_lylc;(f_z)”pf_l’Yf_l(v)) ~ (ef_271(;(f..2)_pf_zan_z(V)) ' (10)

(eza 1(;(1) — Py 72(")) ~ (el,IG(]) -1, h(v))-

We shall show that this rent vector (p,,...,p f—l) forms a competitive rent vector under appropriate
assumptions. The following lemma provides a condition for (10) to have a unique solution.

Lemma23 If I, > a; and (ef, 1, —as, ¥ (V) = (e',0,%(v)), then there is a unique vector
(Pys--es pf_,) that satisfies (10) and has the property

pp2py 2 pr-l .>_af' (1
Proof. 'This is proved in a similar way to Lemma 2 of Kaneko [2]. See Appendix. O

We assume the following conditions :

(I) In 2 af’ (ef71n_af7Yf(v)) ~ (3170771(V))v and (ef7[n’_afv’),f(v)) - (ek:ln_
a,, Y (v)) forallk (f <k<s+1) with I, > q,.
) p,>a,forall k=1,....f—1.

Lemma 2.4 Let [ be an income level such that IG(,(_I)JFl >1> IG(k) (1<k<f—1). Then the
following propositions hold :
) (ek,]—pk, %) = (ek+171“Pk+l Vhea (V) == (ef_la]_pf—l ) '}'f_l(v)) > (e, 1-
as, ¥s(v)) and (ef,]—af,yf(v)) > (e',I—a,,y(v)) forall t > f with I > a,.

(i) (¢5,1—p, %)) = (¢ T=p_y %y () = - = (@ T =y, % (0) = (€1 -
P, %(v)) if p, < 1.
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Proof. These are proved in similar ways to those in Lemma 3 of Kaneko [2]. See Appendix. O

We say that (r,x,y,n) = (r],...,rs,xl,...,x'", yl/,...,y"’, Ny,---,MNs) is a competitive equilibrium
if . .
@ reR,,neR:,, xeXi forall ie M,and y/ € {0,¢!,¢?,...,¢°} forall jEN;
- (b) forall ieM o o v _ .
W(x)+r(w —x) = max(u'(z) +r(w' = z2));
: ZEX!
(c) forall j€N andall z€ {0,e',e?,...,e*} with rz < IV,
WV =ry my) = (2,1 —rz,m2);

@ Tien® +Zjeny = TienW's
©®@n=mo-%0).

Wecall r=(r,,...,rs) acompetitive rent vector and eachr, (k=1,...,s) a competitive rent of the
kth apartment. '

The condition (a) means that each variable belongs to the appropriate set. The condition (b) is the
utility (profit) maximization of the landlords. The condition (c) is the utility maximization of the
households under the budget constraints. The condition (d) is the equivalence of total shpplies and

total demands of apartments. The condition (¢) means that the vector of externalities n=(M,..-,Ns) -

corresponds to the vector of the average incomes.
The following theorem ensures the existence of a competitive equilibrium in our housing market

model.

Theorem 2.1 Assume (A) - (H). Let r = (r,,...,rs) be defined by

e = P if k< f _ _
= a, otherwise, (12)

where py,..., ps_, are chosen by (10). Then r = (r,,...,rs) is a competitive rent vector. [j

_Proof. Since Lemma 2.3 ensures the existence and the uniqueness of (Prs--sp f_l) , it is sufficient
to construct a vector (x,y,n) = (x!,...,x" y' ...,y", ny,--.,Ms) and to show that (r,x,y,n) is a
competitive equilibrium. ‘

We define (x,y,n) = (x!,...,.x", y"',...,y" , n,..-,7s) by
yo=v forj=1,...,n; '
Ny = %(v) forh=1,..s;

X =

{ 0 if k< f, and x/; is a positive integer with 0 < x < w satisfying 13

wh o if k> f, z,.eMx"f+zj€Ny} = SiemWy fori=1,....m
One can easily verifies that (r,x,y,7n) satisfies (a), (d), and (¢). We shall show that (b) and (c) hold.
. Since r, > ay forall k= 1,...,f—1 by (J),and r, = a, forall k= f,... s by (12), it holds that
forall ie M, u'(x) +r(w —x) = maxzexi(ui(z) +r(w'—2)).

Let j be a household such that G(k—1) < j < G(k). By Lemma 2.4, if r, <1, then (e, 1; -
rohW) = (¢, —r, x(v) forall t=1,...,s+1. O
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3 Tarski's Fixed-Point Theorem

Our goal of this section is to provide a proof of Lemma 2.2 using Tarski’s fixed-point theorem.
First, we define some basic notions of lattice theory. (For the fundamentals of lattice theory, see e.g.
Davey and Priestly [1].) By a lattice we mean a system L = (A, <) formed by a nonempty set A and
a binary relation < such that < is a partial order and that any two elements a,b € A have the least
upper bound aV b and the greatest lower bound aAb. A lattice L = (A, <) is called complete if .
every subset B of A has the least upper bound \/ B and the greatest lower bound A B. For example, it
is easy to see that the ordering of real numbers (IR, <) is a lattice, but not a complete one.

Let L= (A, <) be alattice. Given any two elements a,b € A with a < b, we denote by [a, b] the
interval with the endpoints a and b, that is, [a,b] = {x €A | a <x<b}. The induced subsystem
(la,b], <) is clearly a lattice. For example, let a,b € IR with a < b, and let ([a,b], <) be the
induced subsystem of (IR, <). Then ({a,b], <) is a complete lattice.

Let f be a function from A to A . We say that f is monotonically increasing if forall x,y€ A, x<y
implies f(x) < f(y). The following ﬁ\xed-point theorem of Tarski [5] is one of the most important
results on complete lattices :

Proposition 3.1 (Tarski’s fixed-point theorem) Let L= (Ab, <) be a complete lattice, and let f be
a monotonically increasing function from A to A . Then f has a fixed point, i.e. there exists an s € A
such that f(s) =s. '

Proof. Let :
u= \{x€A|x<f(x)}. (14)

Let x be an element with x < f(x). Then obviously x < u. Since f is monotonically increasing,
we have f(x) < f(u), and therefore x < f(u). This means that f(u) is an upper bound of the set
{x€A|x<f(x)}. Hence, by (14), we have

u < flu). 15y
Therefore f(u) < f(f(u)), and hence f(u) belongs to the set {x € A | x < f(x) } . By (14),.we have
flu) < u. (16)
By (15) and (16), we conclude that « is a fixed-point of f . O
The next proposition is derived as a consequence of Tarski’s fixed-point theorem.

Proposition 3.2 Let L = (A, <) be a complete lattice, and let f,g be functions from A X A to A.
Suppose that for all x,,x,,y,,y, €A,

x <x, and y, >y, implies fpy) < f(x,,);
x) <x, and y, >y, implies g(x;,y;) > g(x;,5,). a17)

Then there exist s,t € A such that (f(s,t),g(s,t)) = (s,1).
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Proof. Define a binary relation < on A XA by

(x,y) 2 (x,y) <= x <x, and Y2y,

We shall show that (A x A, <) is a complete lattice. It is clear that < is a partial order. Let S be a
subset of AxA.Let S, ={x€cA| (x,y) €S} and S, ={y €A | (x,y) € §}. Then, one can easily
verifies that (VS,, /\Szv) is the least upper bound of S, and that (AS,,VS,) is the greatest lower
bound of S . _ |

We define a function fx g from A XA to AxA by (f xg)(x,y) = (f(x,y),g(x,y)) for all
x, y € A. Then, by the condition (17), f x g is mohotonically increasing with respectto <on A xA.
Hence, by Proposition 3.1, there exists (s,z) € A X A such that (f x g)(s,t) = (s,2). O

Now we are in a position to give a proof of Lemma 2.2 in Section 2.

Proof of Lemma 2.2. Suppose there are two housing areas in the market, and let S 1 Sy denote the
areas. We shall show that there exists a permutation 7 on {1,2,...,s} such that '

(",0, 7%,y () = (7,0, 7,5,() = - = (7,0, 7,4 (), (18)

where v is the allocation of houscholds' defined by (5). Once the existence of such a permutation 7 is

conﬁfmed, then th¢ conclusion (6) of Lerﬁma 2.2 is easily obtained from (18) and Lemma 2.1 (ii1).
Let n;,m;, € [0,1;]. We regard n; and 7, as imaginary average incomes of S, and S, , respec-

tively. (Here the term “irhaginary” means that 17, and 7, are arbitrary.) Let |

n, if e'es,,
R (19)
n,; if e SR

foreach h=1,...,s. Itis clear from the assmption (C) that there is a permutation 7 on {1,2,...,s}
such that
(€9,0,751)) = (€52,0,m5)) = o = (79,0,m). (20)

Among such permutations 7 on {1,2,...,s} we can choose a unique permutation 7 such that

forany i,j € {1,2,...,s} with i< j, if (e™®,0, Neiy) ™ ("), 0, Te(j)) then 7(i) < 7(j).
' . ' 21
Under the permutation 7, we define a function G.(k) (k=1,...,5) by (4). Let v=(v",... V') €
{0,e!,€2,...,€°}" be chosen by (5). Then, the average incomes ¥, (v),...,%(v) under the allocation
v are calculated by (3). Therefore the actual average incomes in the areas S 1»S;; are determined,
which we denote by 7;,7;, respectively, thatis, forall h=1,2,...,s, ' '

Y = Y(v) if e es,;
Y = 1) if €5, | @

According to the above argument, for a pair (n;,ny;) of .imaginary average incomes, we obtain the
actual average incomes 7;,%,, in the areas S;,S,, , respectively, under the allocation v of households.
This means that we can define two functions f,g from [0, 1] x[0,1,] to [0, 1] by

SMpny) = %, gmpmy) = Y- (23) -
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We shall show that the functions f,g satisfy the condition (17). It is sufficient to show that for all
N MMMy €10, 1],

n, <my  implies  f(n,n,) < f(,ny); (24)
n, < m; implies  g(n;,m,) > g(Mp,ny)s 25
My > My implies  f(n;,my) < f(n,mp); (26)
My > My implies  g(n,my) > g(n,my)- 27

First, we check the conditions (24) and (25). Let n,,1;,n,; € [0, I;] with n, < n;. Define 1,,...,7;s
by (19); define 1,,...,7s by

] { n if ees,, a8)

™=\ n, it es,.

Let 7 be the permutation on {1,2,...,s} defined by (20) and (21) with respect to 7,..., s, and let
7t be the permutation with respect to 7),,..., ;. Then, for each ekes 11

(e",0,m,) = (,0,n,) implies (€",0,7,) = (,0,7,) (29)

forall h=1,...,s: because, if " € S, , this is obvious; if " € S,, then (e",0,n,) = (¢*,0,7,)
implies (e*,0, M,) = (e",0, n,) = (e, 0, )~ (ek,O,ﬁk) by (E). This means that, for each
ek €S, n(i)=7a(j) =k implies i< j. Let v=(v!,...,v") be the allocation of households defined
by (5) with respect to G, , and let v = (171 ,---,7") be defined by (5) with respect to G . Then, by
the definitions of v and 7, it is easy to see that for each ek e S,; » the incomes of the households in

the kth apartment under the allocation ¥ are not higher than that under the allocation v. Therefore,

for ¢k €S 1 _
.> ..
vjezs(k) I > wezm) I (30)

Let us divide both sides of (30) by 3.y X esth) wi . Then we obtain 7,(v) > %(9) for e € S,;.
Thus the condition (25) is proved. We also deduce from (30) that for e/ € S, Zviesa) lj < Zwes(l) Ij .
Hence 7,(v) < %,(9) for €’ € S;, and thus the condition (24) is proved. The conditions (26) and (27)
can also be proved in parallel ways to (25) and (24), respectively.

Therefore the functions f,g satisfy the condition (17). Hence, by Proposition 3.2 and (23), there
exist 7,7, suchthat 1, =¥, and 1, = ¥, . Then, by (19) and (22), foreach h=1,2,...,s,

if e"éS, then n,=n,=%=7y(); if e"eS,, then n, =n,=%,=7%).

This means (7,,...,7s) = (% (¥),--.,%(v)) . Therefore the condition (20) yields the conclusion (18).
This completes the proof of Lemma 2.2.

4 Concluding Remarks

We presented a model of rental housing market with externalities, where the externalities among
households are considered in such a way that the average income of households has an effect on
a household’s consumption behavior. We proved the existence of a competitive equilibrium in our

model using Tarski’s fixed-point theorem, under the assumption that there are only two housing areas.
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Our future work is to generalize Lemma 2.2 to the case of three or more areas, and to prove .

Theorem 2.1 without the assumption (H). In the case of three areas, however, Tarski’s fixed-point
theorem is not useful to prove an analogue of Lemma 2.2, and hence we will need to prove it in

another way, possibly with additional assumptions.

Appendix

- Proof of Lemma 2.1. (i) Suppose (y,m,—98,m,) > (x,m; —8,n,). By (D) and (F), there
isa b >0 suchthat (y,m,—8,m,) ~ (x,m; —8+b,m,). Since m; —8+b>m, — 5, we have
(y;my,m,) = (x,m; +b,n,) by (G). But, by (D) we have (x,m,+b,n,) = (x,m;,n,) ~ (y,m,,M,),
thatis, (x,m,+b,n,) = (y,m,,n,), a contradiction.

(i) Suppose m, > m,. By (D), we have (y,m,,n,) > (y,m,,n,). Therefore (x,m;,n;) =
'(y,m]v,nz) >~ (y,my,m,), that is, (x,m;,n;) > (y,m,,mn,). This contradicts to (x,m,,n,) ~
(}’amz,nz)'

(iii) By (D) and (F), there is a b > 0 such that (x,m,n,) ~ (y,m; +b,n,). By (G), we have
(x;my,my) > (y,;my+b,M,). Hence (x,my,1my) = (y,my+b,1,) = (y,my,M,) .

Proof of Lemma 2.3. (i) Since (ef7lc(f—1) —ay, v (v)) = (ef,‘l,,' —a, 1) =

(e',0, () = - = (ef710, Vi1 (v)) by (D), (7), and the supposition of this lemma, there is a
bs_, such that (ef,IG(f_l) —ag, Y (v)) ~ (ef“,bf_l s ¥r_1(¥)) - This b,_, is unique by (D). Let
Proy =Ic(f_|)_bf—1 . Since (ef’],IG(f_z)——pf_l ) '}’f_l(v)) > (e, Io(—1y=Ps-1> 'Yf_l(v)) ~
¢/ Igr_py = a5 %) = (1,0,%,(0) = - = (¢/72,0,%,,(v)) by (D), (7, and the
supposition of this lemma, there is a by_, such that (ef",lc(f_z) = Pp_1 Yy (V) ~

(ef2, by, Yp—o(v)) . Let P2 =I5 s —bj;_, . Repeating this argument we get (py,...,p;_;) .

Lemma 2.1(ii) implies that if (", 15y — py, (V) ~ (e"’”,IG(k) — Prs1 Yer (V) then
Loy = P < Iy = Prgr - thatis, pe 2> pryy |

Proof of Lemma 2.4. (i) Let k<t < f—1. Since (¢, Igey = Pr %)) ~ (e’“,l’G(,) -
P;%] ) 7;.;.1(")) and p, > PyyysWe have (e, I_pti }’!(v)) = (ef+l’1_p;+| s 7,+1(V)) by (G) or (7).
Hence the first proposition is proved. Let ¢ > f with I, > a, . Since (el 1, —az, Y(v)) > (e, In—
a;, % (v)) by (I), there is a b, > 0 such that (e/, I, —ag, ¥(v)) ~ (e, lh—a;, + b, %(v)) by (D)
and (F). By Lemma 2.1(ii), we have I, —a; < I —a,+b, . Hence, (ef,l—a-f, Y(v)) = (e, 1-a;+
by, %(v)) by (G) or (7). Therefore (ef,lfaf,yf(v)) > (e, I—a,+b,,1(v)) = (e, I—a,,%(v)).
Let t > f with I >a, > 1I,. Since (e/,0,7,(v)) = (¢',0,%(v)) by (7), there is a b, >0 such
that (¢, 0, Y(v)) ~ (€', b, 1(v)) . Hence, (ef-,l—a,,yf(v)) > (e',I—a,+b,,%(v)) by (G)or

(7). Therefore (¢/,1—a,,y;(v)) = (¢',1~a,+b,,%(v)) = (¢, ] —a,,%(v)). Since I, —a; >

0>1,—a,,we havevl—af>1—a,,which implies (ef,I—af,yf(v)) - (ef,I-a, Y¢(v)) . Thus
(efvl_afa Yf(v)) - (eta]_au')/t(v)) :

(i) Let ¢ <k with p, <I. Suppose (e',I—p,,%(v)) > (¢, 1—p,\,%,1(¥)). By (D) and
(F), there is a b > 0 such that (¢',1—p,,%(v)) ~ (et I—p,,+b,%,,(v)). Since p, > p,,, .
wehave I —p, <I—p,  +b. Therefore (¢, I;, —p;, %(v)) = (e’+1,IG(,)—p,+1+b, %41(v)) by
(G). Hence (e'aIG(,)_Pn %h(v)) = (eHl,IG(,)—p;H +b, 'Yt+1(v)) = (e, Ia(,)_pt+l ) YH—I(")) .
But this contradicts to (e', 15y = Pr, %(v)) ~ (e'“,IG(r) — Ps15 %1 (v)) . Therefore (e'*! 71—
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pt+17)’t+1(v)) t (etyl_ph’yr(v))‘
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An Approach to Housing Markets with Externalities using
Tarski’s Fixed-Point Theorem |

Kiyoshi Ikeda

This paper presents a model of rental housing markets with externalities, in which house-
holds and landlords trade apartments as indivisible commodities. The externalities among
households are considered in such a way that the average income of households affects on a
household’s consumpﬁon behavior. The existence of a competitive equilibrium in this model

is proved using Tarski’s fixed-point theorem.

Key Words : rental housing markets, externalities, competitive equilibria, Tarski’s fixed-point

theorem
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